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1.   INTRODUCTION 

Sparse matrix methods have been important in practical linear programming 

from the very earliest ImplGmentat ions of the revised simplex method. 
i 
t 

These methods have become even more important as the size of problems 

presented for solution has continued to grow until, at present, linear j 

programs with a few thousand constraints are quite commonplace.  Fortun- I 

atoly, and not surprisingly, the densities of the constraint matrices 

decline with the increase in dimension thus keeping the amount of data 
I 

storage and arithmetic within possible proportions. » 

Techniques for handling sparse matrices are important in two major areas 

in linear programming:- 

1.   Storage and retrieval of the problem data,   Thore  are several 

techniques for storing sparse matrices in use at present (see Smith £13) 

and de Buchet C63). 

2.  Maintaining and applying the basis inverse or substitute inverse. 

This paper Is concerned with the second area.  Readers will be assumed to 

! be familiar with the simplex method using the product form of inverse 

(see Dantzlg C7j) and the Gaussian elimination for solving systems of 

equations (see Forsythe and Moler ClOQ). 

In recent years It has been realized that the sparsity of the inverse repre- 

sentation produced by the linear programming inversion routine can be 

drastically Improved by using the Gaussian or Elimination form of inverse 

(E.F.I.) rather than using the Gauss-Jordan or product form of inverse 

(P.I''. I.).   This scheme was first advocated by MarUowit/ CHj and subsequently 
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for the special casn of staircase matrices by Dantzig [tQ.   Later still 

Dctnt/.i^, Harvey, McKnight and Smith £9j experimentally doniünstrated the 

superiority of the K.F.I, over the P.F.I, for a number of linear programming 

problems and Bray ton, Gustavson and Willoughby [öj were able to prove this 

for general sparse matrices. 

The elimination form of inverse is now known to be implemented in at least 

two commercial linear programming codes;  Standard Oil's M5 code p)J and 

Scientific Control Systems' UMPIRE code (see Beale C3J).  Other codes are 

in the course of being modified and may have been already.   Some aspects 

of the P.F.I, and E.F.I, inversion techniques will be examined in the next 

section. 

The  success of the Gaussian or Elimination form of inverse naturally leads 

one to ask whether the resulting triangular factors can be used to advantage 

in updating the inverse in the iterations following a re-inversion.   The 

answer would certainly appear to be yes.  Dantzig tßj advocated updating 

the triangular factors of the basis for his staircase algorithm since his 

preserves the staircase form of the factors.   It seems extremely likely 

that in this special case ipdating the factors rather than using the ordinary 

product form of updating would lead to an increase in efficiency.  Bennett 

and Green £4j pursued this technique for general sparse matrices and Bartels £lj 

and Bartels and Golub (23 have advocated a form of Dantzig's method on the 

grounds of numerical stability, without however commenting on the sparsity 

implications.  Brayton et al ^5) have proposed two other updating techniques 

although their concern is not primarily with efficiency in terms of the 

simplex method. 

The three new proposals will be reviewed and compared in Section 3.together 

with their implications for the simplex method.  One of these methods is then 
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selected for some computational experiments, the results of which are presented 

in Section 4.  Section 5 describes how this method might be incorporated 

efficiently into a production code. 

t 
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2.        TlIK PRODUCT AND   ELIMINATION FORMS OF  INVERSE 

P.F.I. 

A popular method of carrying out re-inversion (see Orchard-Hays Cl<()) is 

to order the rows (implicitly) and the columns (explicitly) of B and 

partition as follows:- 

B m 

Ai 

A    B 

D    E 

where A  and A  are lower triangular.   The submatrix B is sometimes 

referred to as the "bump" and those vectors with elements in A  are "above 

the bump", those in A„ "b^low the bump".  It seems to be characteristic of 

most linear progrims that the submatrices A  and particularly A„ are quite 

substantial portions of B. 

The above partitioned form of B may be factorized thus 

B = 

Al "i — 

A         I B 

D I I 

I 

E 
J L 2 _ 

Since A, and A« are triangular the calculation of the product form of 

inverse is non-trivial only for the submatrix B.  Various "merit" schemes 

have been proposed for selecting the order of pivots in B but they will not 

be discussed here (see e.g. Tewarson O-Sj). 

Using the notation of reference 5 we nay then express B as a product of 

elementary transformations 
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or equlvalently 

B  =  T1T2 ••• Tl 

B'1    = T'tl   •'• T21 TI1 

where T is of the form (we assume B is m x m) 
k 

'Ik 

1  i 

t 
kk 

mk 

=  I + (tk - ek) ek 

where e is the k  unit m vector, e' its transpose, and 

t,  = T~   ... T~  T~  b, 
k     k-1     2  1k 

th 
where b is the k  column of B. 

k 

Note however that two transformations are made for each column in the "bump". 

hence the elements of the T for such columns are zero on the rows corretsponding 

to ^_ and in addition a second transformation with a unit pivot and th" k 

column of E on the rows of A?iis also made.  Note also that 

T,   = I - t,, (t, - e, ) e,' and that it is essentially necessary to keep 
k kkkkk 

only the vector t, to store T, .and t. and t. , to store T, .   (see tsl). 
k k»    k     kk k 

th 
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E.F. I. 

The above partitioning scheme may be used with only a slight modification 

in the elimination form of inverse. By rearranging the rows and columns 

of the submatricos A , E and D wo may repartition B to give (see Bealo £0) 

B  s D 

A 

* 

B 

/v 
where A 9 is now upper triangular. This procedure obviously facilitates 

factorization into triangular factors by Gaussian elimination since again 

only the factorization of B is non-trivial. 

Suppose B is now factorized into LU where L is lower and U is upper triangular. 

Q th 
Let dt. and u be the k  columns of L and U, then defining 

K K 

Lk    =    I  +  (/k " ^ ek 

Uk    =    I +  (uk - ek) e' 

we may factorize 

L       s    L    Lrt   ...   L 
12 m 

U       =    U    U     ,   ...  U, 
m    ra-1 1 

Hence o-1 „"I „-1   l"1 l"1 
B =    U,     ...  U      L       ...   L, 

1 mm 1 

There is some latitude in the choice of values of diagonal elements of L and U. 

The most efficient choice would appear to be setting u  to 1 for k in 

partitions A,, B and ^.. to 1 in partition A .  If this is done the number 
X KK £ 

of transformations (disregarding unit transformations) is exactly the same as 

for the P.F.I, since two transformations are calculated only for the columns 

in B. 6 



The order of choice of pivot elements in B may be decided here, as for 

the P.P.I., by merit schemes.   These are exhaustively discussed by 

Dentzig et al C^). 
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:i.   METHODS OF UPDATING THE INVEItSM 

In this section we briefly roviow, witliout rigorous proof, and compare four 

methods of updating' the inverse.  Ail except the first assume the elimination 

form of inverse discussed in the previous section.  With the exception of 

method II all are described at greater length by Drayton et al [5j. 

Method I C73 

This is the standard procedure used in the product form of the simplex method. 

Suppose column b of the basis is to be replaced by b .  Let B be the original 
K K 

basis (factorized in either E.F.I, or P.F.I, form) and let D be the new basis. 

Let tj.,  = B-1 b. 
'Ai 

then B-1  = T,"1, ß"1 

where T/ + l = I + (t^^ - e^ e' 

Hence if B~   '    T~l    • • •   T2    Tl 

then a"1   -  T"^ T"1 ... T^1 

Further changes are made by repeating the above process. 

Method II ClJ 

This is Bartels's version of Dantzig's algorithm (jBj,  Suppose we have 

B    = LU 

i.e. B-1   =  U"1 L-1 ... L"1 
m      1 



and we again change b to b . Then L B will be identical to U except 

in column k. Permute columns k+l,.,.,m one place to the left and place 

column k in position m to give a Hessonberg matrix 

= L-1 B Q 

(where Q is a permutation matrix). 

The elements below the diagonal in columns k to m-1 of II must now be 

eliminated by a set of elementary transformations.  An important feature of 

Bartels' method is that in carrying out the elimination rows may be inter- 

changed or permuted to place the maximum of the elements h.. , h,    on 

the diagonal (Wilkinson's "partial pivoting" strategy D-öJ) to ensure 

numerical stability. 

The result is a new upper triangular matrix 

U = G , P , ... G,   P   G P. H 
m-1 m-1     k+1 k+1 k k 

where the P.  are either unit matrices or the permutation matrices exchanging 

rows Hand /+!, and G. are the elementary 

the element below the diagonal in column / . 

rows * and /+!, and G. are the elementary transformation matrices eliminating 

Hence B"1 = Q Ü"1 G  , P  , ... G, P, L"1 
m-1 m-1     k k 



Dantzig fBj and Bennett and Groon (^Q have shown that the "near coramutativity" 

of the matrices G. may be used to calculate a now lower triangular matrix L 

such that 

L"
1
  = G  , P  , ... G, P, L-1 

m-1 m-1     k k 

Thus maintaining a true triangular decomposition.   This is not however an 

essential feature of the method. 

Of course the permutation matrices P. , Q need not appear explicitly.  All 

that is necessary is to record the order of pivoting.  The process is 

repeated for the next iteration using the new U and (implicitly) the new L. 

Method III TSJ 

Neither this method nor the next maintain a true triangular decomposition, 

however, both require initially the elimination form of Inverse. 

Suppose we have B = LU or equivalently 

B"
1
 = u"1 ... u"1 L"1 ... L'1 

1      mm      1 

and again change column b to b and B to B. 
K      K 

The method proceeds as follows:- 

Let v,  == L" b, 
k k 

then L  B is identical to U except for column k which is now v instead of 

V 

10 



To reduce L      D back  tu upper  trinngulur  form  the  lirsl  slop cairle«! nut 

is to  reduce  row k  to  zero in columns  k+l,. .. ,111. 

To accomplish this we form a row  transformation using the row vector 

Wk    =     (0 0'Wk.k+l V  = (0 0'Uk,k+l 
Ukm)U 

-1 

The row transformation is then the elementary matrix 

W.  = I + e, w' 
k        k k 

and the desired elimination is performed by forming W  L  B, since the 

columns k+l,...,m of L  B are identical to U, w" UB (I - e w') U and 
K K  K 

Furthermore the first k w* U is simply the row (0,...,0,u k+1»«"»uk )• 

columns of W, are unit vectors and hence the first k columns of L  B are 
k 

unchanged. 

Now let tw = Wk L  b and form the elementary column transformation 

Tk = I + ^k " ek) ek 

then clearly forming Tk «£ L~ B reduces column k to the unit vector e 

and columns k+l,...,m are unchanged since they have a zero on the pivot row. 

(k) 
The result then is a new upper triangular matrix, say U ' , obtained from U 

th 
by replacing the k  row and column by the unit vector e . 

11 
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i.e. U(k)     =     T-S-^^D 
k       k 

B"1       =     U^)"1  T"1  W"1 L"1 

k       k 

(k) 
Using product  form notation  if we  lot U.       denote  the  elementary matrix IL 

with u        set  to zero we may  re-write B      as Kf, 

5-1     =     UI1---U:1lCl"1-   U^"1  I"1  W-1 L-1   ...L-1 
1 k-lk+1 m kkm 1 

Note that the row transformation W can be represented (if desired) by a 

product of two-element elementary column transformations.  Also note that 

although we have introduced two new transformations that if U was previously 

(k) 
in product form, U = U  ... LL , the new form U   is obtained by simply ml * r * 

deleting U, and a single element at most from each U   ... U for a net 
k k+1     m 

gain of one transformation in general (unless U happens to be the unit matrix), 

To carry the process on one simply treats T  W  L  as the lower triangular 
K   K 

factor as before,  although  in fact if multiplied out the resulting matrix 

would not  in general be triangular. 

Method IV  fSj 

This method, which also assumes the elimination form of inverse, proceeds by 

inserting matrices T, into the list U  ... U, and sometimes deleting a U. . 
k ml ^   k 

To change b to b we form the vector 

K   =   u^i ••• u"1 L'1 ... L'1 b, k     k+1     mm      Ik 

and replace U by the transformation 
K 

Tk = I + (tk - V ek 

12 



Then 

ß"1     =     U"1   ...   U"1,   T"1 U"1,    ...   U"1  L-1   ...   L"1 

1 k-lkk+1 mm 1 

Continuation of this process is rathor more complic ited than in the preceding 

methods.  Suppose now we have changed b to b and wish to change b  to b^ . 

There are two cases:- 

1.       If       i   £   k then let 

t     =   u7*   ... u"1, T"
1
 U"*    ... u"1 L'

1
 ... L"

1
 b £+1 k-lkk+1 mm 1 

form T.    a    I  +  (t^   - e^ ) e^ 

and replace Ui  by Tt     as before. 

2.   If    t >  k  form 

and the transformation T. as above. However, IL is not replaced 

and T. is placed directly before T in the inverso transformation 

list. 

i.e. B"1 = U"1 ... U"^ l"1 T"1 U"^ ... U"1 ... U"1 L-1 ... L"1 

1      k+1 /  k  k+1 1  m      1 

Continuing further, if columns k k have been changed and column^ is 

to be altered, let k = min (k ... k ) and carry out the above procedure. 

Having completed our summary of methods for updating a basis inverse or 

substitute inverse we must consider their relative merits in the context of 

the simplex method in terms of preserving sparsity, work required per 

Iteration, and storage and data handling considerations, 

13 
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The great advantage of Method I of course is its simplicity and the minimum 

of computational steps and housekeeping involved.  The essential step in 

changing the basis in the simplex method, given the constraints 

Ax = b 

and the now column a  to enter the basis, is the calculation of the updated 
ü 

column 

OC = IT1 a . 

and the ratio test with the updated right-hand side, 

ß  = B"1 b. 

to find the pivot row k from (assuming ^ ^ 0) 

■  A 0 = mm ' — 
i  <*i 

**>0 

The vector o{ , which we cannot avoid calculating, is precisely the vector 

t.  used in Method I to update the basis inverse (and the right-hand side). 

Methods II to IV all suffer from the disadvantage that they require not only 

the vectored for determining the pivot row but also another vector t which 
k 

is only a partially updated form of a..  Methods II and III can more or less 
ü 

overcome this disadvantage by putting the vector L  a . in temporary storage 
J 

in the course of calculating o< , at the expense of either using more of the 

computer's core storage (thus effectively limiting the number of vectors 

which can be saved for multiple pricing) or of using backing store.  This 

burden is, however, comparatively light compared to the immediate and acute 

14 



difficulty encountered in Method IV where the vector t to be calculated 

for updating purposes cannot in general be known until after the ratio test 

operation to determine the pivot row.  This implies that t must therefore 

be calculated from scratch or obtained by backward transformations on the 

vector aC • 

Now let us consider the implications of Methods II to IV in terms of work 

per iteration expended in updating the basis Inverse and of the necessary 

data manipulation.  Current packing methods of storing sparse data, parti- 

cularly strings of transformations (see £6}, £133) make it rather difficult 

to modify an existing product form of L and U.  Replacement of U by a T 

with more non-zeros in Method IV, for example, necessitates either a whole- 

sale shifting of elements of U, maintenance of a second transformation file 

to be inter-woven with the first, copying out a complete new basis file or 

initial and wasteful leaving of space for such eventualities.  A similar, 

in fact worse, situation occurs in Method II where on the average half of 

the U. transformations must be modified at each iteration, increasing the 

number of non-zeros to be stored.   Explicit storage of U can only be an 

answer for very small problems.  Some kind of two-file system, each taking 

the new inverse in turn, would appear to be necessary in general, involving 

a great deal of read/write activity.   Method III on the other hand requires 

only the elimination of previously non-zero elements in U - a comparatively 

easier task.  This point will be returned to in Section 5. 

The amount of arithmetic work per iteration would appear to be greatest in 

Methods II and III.   The bulk of the work in Method III comes from applying 

the G| transformations to H to reduce it to triangular form.  On the 

average we expect to have to deal with m/2  columns on the right-hand side of 

the matrix.   This is a considerable amount of computation and becomes pro- 

15 



grossivoly worse as U fills in with each iteration.  For Method HI the 

main effort is in computing the row vector w'.   It will be shown in 

Section 5 that this calculation may be performed concurrently with the 

backward transformation phase of the next simplex iteration.  The most 

important point, however, is that U becomes progressively less and less 

dense in this method and the calculation progressively easier.  There is 

admittedly the extra complication in Method III that row transformations 

are called for, but this is more of an inconveneience than a problem and 

as already pointed out could be circumvented. 

Finally we consider the most important point - preservation of sparsity. 

In their discussion Brayton et al fSj concluded that Method III was superior 

to Method IV in this respect since both a row and column of U are eliminated 

in Exchange for a vector w', which only has elements in positions k+l,..,,m, 
K 

and a transformation vector t which is the incoming column multiplied only 

by L .  On the other hand if in Method IV some columns with very small 

pivot row index k is introduced then virtually every change thereafter will 

be of type 2 and we cannot expect much improvement over the ordinary product 

form method. 

In comparing Methods II and III it again seems almost certain that Method III 

will win out.  The number of new elements added in the new transformations 

would appear to be much the same, but as already mentioned in Method II U 

becomes more and more dense while in Method III the density of U declines. 

In this connection it should be pointed out that the columns of U most 

frequently operated upon are the right-most.  These, however, are just those 

columns which will be initially the most dense after inversion^since inversion 

schemes generally postpone the densest columns until last. 

16 



In the light of these considerations it appears that Method III is the 

most promising for incorporation into the simplex method, both on the 

grounds of work per updating and preservation of sparsity.  However, 

there is certainly some increase in updating work per iteration over the 

standard product form (Method I) and a significant improvement in growth 

of non-zeros in the basis representation is required to justify its use. 

Some experimental results are presented in the next section. 

Although we have chosen Method III ai the best for our purposes this is 

not to say that the others may not be superior in other circumstances. 

Bartels's method (II) is of considerable importance in achieving highly 

accurate solutions to small dense problems (see Bartels and Golub (2^) 

while Dantzig's original version C83 of Method II for specially structured 

matrices is as yet untried. 

17 



4.   COMPUTATIONAL RESULTS 

Sumo computational oxperlmotits have been carried out to determine whether 

Method III gives a sufficient improvement over Method I In terms of growth 

of non-zeros to warrant further Investigation. 

To carry out these experiments two linear programming codes were written 

and run on the Stanford University IBM 360/67.  Both are all-in-core 

FORTRAN codes using the elimination form of inverse.   Neither employs 

multiple pricing.  The first code updates the Inverse in standard product 

form fashion (Method I), the second is a modified version using Method III 

to update the inverse.  No attempt has been made to evaluate timings, 

dependent as they are on machine used and programming technique.  Only the 

number of non-zero elements in the inverse representation is considered. 

Five problems ranging from small to moderate have been used.  These problems 

are two of the well-known SHARE standard test problems, 2B and IB, (see Smith 

and Orchard-Hays fl'O) and 3 other test problems supplied by Joel Cord of IBM. 

The relevant statistics on these problems are given in Table 1. 

Only the smallest problem was run to optimallty, the remainder being cut off 

after 200, 250, 300 and 350 iterations.   To compare the two methods the set 

of problems was run on both codes with a fixed inversion frequency - 40 

iterations for the SHAKE problems and 50 for the others.  The initial com- 

parison is arrived at by counting, at intervals of 10 iterations, the number 

of new non-zeros added to the Inverse since thp last re-inversion.   To 

further remove constant factors only non-pivot elements are counted.   (Both 

methods give a net addition of one pivot element per Iteration in general.) 

18 



All problems were started from a slack basis and hence tho Iterations up to 

the first re-inversion are ignored.  The number of new non-pivot non-zero 

elements after multiples of 10 iterations from re-inversion is then averaged 

for the remainder of the run.  These figures are given in Table 2. 

The raw data appears in more digestible form in Table 3, where Method I has 

been used as a base and the fraction of new elements produced by Method III 

is given.  The improvement is obviously very satisfactory, with the possible 

exception of problem 2.  As might be expected the improvement tails off as 

the number of iterations increases, particubrly for the smaller, denser 

problems. 

To obtain a better estimate of the effect of Method III on the simplex algorithm 

we should also consider the total number of non-pivot non-zeros in the inverse. 

To this end we list the inversion statistics in Table 4 and compute the 

fraction of total non-pivot non-zeros produced by Method III, again using 

Method I as a base.  The inversion statistics do not include the original 

all-slack basis and are of some interest in themselves.  The pivot choosing 

procedure in decomposing B (see Section 2) is essentially algorithm 7 in 

Dantzig et al Du • 

The modified data for Method III appear in Table 5. 

Although the problems are comparatively small and the sample is also small 

the results in Table 5 are quite encouraging.  It appears that for reasonably 

sparse problems with 200-300 constraints a reduction of 20-30% in the number of 

non-zeros in the substitute inverse may be expected using Method III, thus 

considerably reducing the time spent in forward and backward transformation 

in the simplex method.  The results for problem 4 show that the reduction 

may be dramatic. 
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5.   J.Ml'LKMENTATION OF METHOD lil 

The results of the pivcodirvg suction sug^fst that further oxporiments using 

a modifiod production or comniorcial code would bf worthwhile.   It would also 

appear that the modifications could be made and the extra updating work per 

iteration accomplished at comparatively little cost. 

The first essential is clearly to have a code which employs the elimination 

form of inverse.  Given such a code it should be a simple matter to adjust 

the storage and buffering activities such that the T,  W,  transforms can be 
k  k 

adjoined to the left of the product form L  ,.. L,  of L 
m      1 

th 
The reduction of the k  row and column of U to the unit vector e can 

k 

probably be accomplished satisfactorily by simply setting indicator bits. 

Usually we will have U  represented as U  U  ... U  , or rather the packed 
12m 

vectors u- corresponding to these elementary matrices.  The reduction may 

then be accomplished by tagging U  with a bit to indicate it is to be skipped 

over.  Furthermore using, say, the blocked index scheme (see Smith Q.3J ) for 

storing the vectors u*  the row index k, if it appears, may be tagged to 

indicate the element is zero for ^= k+l,...^.  Failing this the u . elements 

could be physically replaced by zeros if necessary. 

This scheme is of course inefficient in the sense that in an out-of-core 

system progressively more and more valueless data must be buffered in and out 

of core.   On the other hand if the system is already compute bound.rather 

than I/O bound this is no restriction, and even if this is not the case the 

very frequent re-inversions carried out for large problems should prevent 

this inefficiency from reaching really noticeable proportions. 
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Finally let us consider the process of computing w'.  For simplicity let 

us assume we are carrying out the first iteration after a re-invorsion. 

We then have 

B   = U,  ... U  L   ... L, 
1      mm      1 

Now the calculation of 

•1 
wk  = (0 0'Uklk+l 

Ukm) U 

and also the modification of U to U   may be carried out in a single pass 

from left to right through the transformations U,  ... U .  To see this 
1     m 

notice that in computing say 

(0f...,0f3k+1,..,,zra) U^
1     for  £ > „    .. k j 

only the elements z  »....z.  play any part in the arithmetic since U and 

U,  are upper triangular.  The ©loinonta zt  .,...,z are unchanged.  We 
L t+l    m 

(k) therefore arrange the computation of w' and the modification of U to U 

as follows:- 

Initial Step 

Create a zero row vector and skip transformations U  .., U~ ,  Tag If" . 
X It" X K. 

Let £ =  k+1. 

General Step 

For transformation U« , if u » is non-zero extract it and add it in 

position / of the row vector, marking the element as now being zero in U« . 

Post-multiply the row vector by U/ .  Proceed for £=  k+l,..,,m. 

21 



A vory advantageous result of this procrdui-o Is that tho updatinK of tho 

ii'vursc can be carried out ccncurrontly with tho backward transformation 

of the follow.ng simplex iteration.  In calculating the pricing vector for 

the next iteration we must compute 

7r'=   c u00"1 T:1 W"1 L"1 
k  k 

(k) 
for some row vector c'.  Now tho first k-1 columns of U   are identical 

with those of U.  Tho modification of the remaining columns of U may be 

carried out in the same pass through the transformation file as that for 

the calculation of TT' and furthermore only one unpacking of the non-zeros 

from each u, is necessary.  Having obtained w,' the new transformations 
I k 

T  , W  may be attached to L  and the remainder of the calculation of-if' 

can proceed.  Looking to the future, this procedure is admirably suited 

to parallel processing facilities. 
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6.   CONCLUSION 

Linear programming inversion routines have now reached a very high level of 

sophistication and efficiency, both in terms of speed and sparseness of the 

resulting inverse.  Although there is doubtless still some room for improve- 

ment it seems likely that further improvements in efficiency must be sought 

in other areas.  The attempt to maintain a sparse inverse is one such area 

and the results of Section 4 give considerable grounds for optimism.  What 

is needed now is full scale experimentation with some of the methods reviewed 

here on large problems of 1000 and more constraints to confirm and extend 

these results. 
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